首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   179101篇
  免费   13529篇
  国内免费   6732篇
工业技术   199362篇
  2023年   2361篇
  2022年   4345篇
  2021年   6419篇
  2020年   4946篇
  2019年   4244篇
  2018年   5396篇
  2017年   5870篇
  2016年   5426篇
  2015年   6097篇
  2014年   8029篇
  2013年   9829篇
  2012年   10571篇
  2011年   11407篇
  2010年   9767篇
  2009年   9566篇
  2008年   9481篇
  2007年   8888篇
  2006年   8267篇
  2005年   7034篇
  2004年   5399篇
  2003年   5231篇
  2002年   5293篇
  2001年   4776篇
  2000年   4043篇
  1999年   3559篇
  1998年   2743篇
  1997年   2327篇
  1996年   2083篇
  1995年   1837篇
  1994年   1543篇
  1993年   1297篇
  1992年   1266篇
  1991年   1109篇
  1990年   1112篇
  1989年   1024篇
  1988年   911篇
  1987年   843篇
  1986年   767篇
  1985年   729篇
  1984年   707篇
  1982年   669篇
  1981年   672篇
  1979年   742篇
  1978年   780篇
  1977年   743篇
  1976年   762篇
  1975年   714篇
  1974年   721篇
  1973年   724篇
  1972年   705篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
51.
Srx(Zr0.9Y0.05Yb0.05)O1.95+x (x=1.0, 0.9, 0.8, 0.7) ceramics were prepared by solid state reaction sintering. The sintered Sr1.0(Zr0.9Y0.05Yb0.05)O2.95 is a single-phase solid solution while the sintered Srx(Zr0.9Y0.05Yb0.05)O1.95+x (x=0.9?0.7) are composites, and a significant grain growth inhibition is observed in the sintered Srx(Zr0.9Y0.05Yb0.05)O1.95+x (x=1.0, 0.9). Rare-earth elements distribution in the bulk materials indicates that Yb and Y preferentially substitute Zr-sites in SrZrO3, and the highest solubility of RE2O3 in pure SrZrO3 is ~0.8 mol%. The sintered Srx(Zr0.9Y0.05Yb0.05)O1.95+x have high thermal expansion coefficients up to ~11.0×10?6 K-1 (1200°C). Sr0.8(Zr0.9Y0.05Yb0.05)O2.75 has the lowest thermal conductivity of 1.38 W·m-1·K-1 at 800°C. Srx(Zr0.9Y0.05Yb0.05)O1.95+x (x=1.0, 0.9, 0.8) show no phase transition from 600 to 1400°C, whereas Srx(Zr0.9Y0.05Yb0.05)O1.95+x (x=0.9, 0.8) have excellent high-temperature phase stability over the whole investigated temperature range. Therefore, Srx(Zr0.9Y0.05Yb0.05)O1.95+x (x=1.0, 0.9, 0.8) are considered as promising TBCs materials that might be operated at higher temperatures compared to YSZ.  相似文献   
52.
The NASICON type solid electrolyte LATP is a promising candidate for all-solid-state Li-ion batteries considering energy density and safety aspects. To ensure the performance and reliability of batteries, crack initiation and propagation within the electrolyte need to be suppressed, which requires knowledge of the fracture characteristics. In the current work, micro-pillar splitting was applied to determine the fracture toughness of LATP material for different grain orientations. The results are compared with data obtained using a conventional Vickers indentation fracture (VIF) approach. The fracture toughness obtained via micro-pillar splitting test is 0.89 ± 0.13 MPa?m1/2, which is comparable to the VIF result, and grain orientation has no significant effect on the intrinsic fracture toughness. Being a brittle ceramic material, the effect of pre-existing defects on the toughness needs to be considered.  相似文献   
53.
AgNbO3 lead free AFE ceramics are considered as one of the promising alternatives to energy storage applications. In the majority of studies concerning the preparation of AgNbO3 AFE ceramics, an oxygen atmosphere is required to achieve high performance, increasing the complexity of the fabrication process. Herein, a facile approach to preparing AgNbO3 ceramics in the ambient air was reported, in which the AgNbO3 ultrafine powder with stable perovskite structure was synthesized by hydrothermal method instead of the conventional ball milling process, leading to a lower temperature of phase formation and thus smaller grain size. The resulting ceramics sintered at 940 °C displayed high breakdown strength (216 kV/cm) and a recoverable energy density of 3.26 J/cm3 with efficiency of 53.5 %. Also, the high thermal stability of recoverable energy density (with minimal variation of ≤20 %) and efficiency (≤ 10 %) over 30–150℃, enables AgNbO3 ceramics achieved to be a promising candidate for energy storage applications.  相似文献   
54.
In the development of fuel cells, it is the key to large-scale commercialization of fuel cells to rationally design and synthesize efficient and non-noble metals-based bifunctional electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). In this paper, spinel CoFe2O4/carbon nanotube composites (CoFe2O4/CNTs/FA) were synthesized by solvothermal and calcination method. XRD, TEM, XPS and BET characterizations indicate that the addition of complexing agent fumaric acid can improve the crystal growth kinetics and morphology of CoFe2O4/CNTs nanohybirds. The as-synthesized CoFe2O4/CNTs/FA pyrolyzed at 500 °C have an outstanding bifunctional catalytic activity for ORR and OER with the potential of 1.62V (vs. RHE) at a current density of 10 mA/cm2 and half-wave potential E1/2 = 0.808V (vs. RHE) in alkaline electrolyte, respectively. It is obviously better than unloaded CoFe2O4 nanoparticles and commercial CNTs. CoFe2O4/CNTs/FA also exhibit better methanol tolerance ability and durability than commercial Pt/C and RuO2 catalyst. This investigation broadens an idea of simple compounding of spinel with carbon-based materials to improve electrochemical properties.  相似文献   
55.
Anti-washout and tissue adhesion properties are essential for the clinical application of injectable bone materials. In this study, we prepared calcium phosphate cement (CPC) with anti-washout and tissue adhesion properties and attempted to build covalent bonds between CPC and the amino groups in bone tissue under a self-regulating pH system in the CPC (acidic to basic). The results of push-out tests demonstrated that a significant enhancement (from 6.42 ± 0.76 N to 61.5 ± 4.09 N) in tissue adhesion was obtained with the addition of 6% (w/w) oxidized sodium alginate (OSA) in CPC. The FTIR, XRD, anti-washout test, XPS, pH test, and SEM results suggested that the synergistic effect of OSA-citric acid (CA) led to the formation of a three-dimensional gel network structure in the CPC, and the Schiff base reaction between aldehyde and amino groups induced adhesion between CPC and the bone tissue. Further, the addition of less OSA had no significant negative effect on the hydration properties of CPC. Our work aims to promote the development of injectable bone material in clinical applications.  相似文献   
56.
A appropriate size with three-dimension(3 D) channels for lithium diffusion plays an important role in constructing highperforming LiNi_(0.5)Mn_(1.5)O_4(LNMO) cathode materials, as it can not only reduce the transport path of lithium ions and electrons, but also reduce the side effects and withstand the structural strain in the process of repetitive Li~+ intercalation/deintercalation. In this work, an e fficient method for designing the hollow LNMO microsphere with 3 D channels structure by using polyethylene oxide(PEO) as soft template agent assisted solvothermal method is proposed. Experimental results indicate that PEO can make the reagents mingle evenly and nucleate slowly in the solvothermal process, thus obtaining a homogeneous distribution of carbonate precursors. In the final LNMO products, the hollow 3 D channels structure obtained by the decomposition of PEO and carbonate precursor in the calcination can provide abundant electroactive zones and electron/ion transport paths during the charge/discharge process, which benefits to improve the cycling performance and rate capability. The LNMO prepared by adding 1 g PEO possesses the most outstanding electrochemical performance, which presented an excellent discharge capacity of 143.1 mAh g~(-1) at 0.1 C and with a capacity retention of 92.2% after 100 cycles at 1 C. The superior performance attributed to the 3 D channels structure of hollow microspheres, which provide uninterrupted conductive systems and therefore achieve the stable transfer for electron/ion.  相似文献   
57.
Electroreduction of small molecules such as H2O, CO2, and N2 for producing clean fuels or valuable chemicals provides a sustainable approach to meet the increasing global energy demands and to alleviate the concern on climate change resulting from fossil fuel consumption. On the path to implement this purpose, however, several scientific hurdles remain, one of which is the low energy efficiency due to the sluggish kinetics of the paired oxygen evolution reaction (OER). In response, it is highly desirable to synthesize high-performance and cost-effective OER electrocatalysts. Recent advances have witnessed surface reconstruction engineering as a salient tool to significantly improve the catalytic performance of OER electrocatalysts. In this review, recent progress on the reconstructed OER electrocatalysts and future opportunities are discussed. A brief introduction of the fundamentals of OER and the experimental approaches for generating and characterizing the reconstructed active sites in OER nanocatalysts are given first, followed by an expanded discussion of recent advances on the reconstructed OER electrocatalysts with improved activities, with a particular emphasis on understanding the correlation between surface dynamics and activities. Finally, a prospect for clean future energy communities harnessing surface reconstruction-promoted electrochemical water oxidation will be provided.  相似文献   
58.
Small interfering RNA (siRNA) can effectively silence target genes through Argonate 2 (Ago2)-induced RNA interference (RNAi). It is very important to control siRNA activity in both spatial and temporal modes. Among different masking strategies, photocaging can be used to regulate gene expression through light irradiation with spatiotemporal and dose-dependent resolution. Many different caging strategies and caging groups have been reported for light-activated siRNA gene silencing. Herein, we describe a novel caging strategy that increases the blocking effect of RISC complex formation/process through host/guest (including ligand/receptor) interactions, thereby enhancing the inhibition of caged siRNA activity until light activation. This strategy can be used as a general approach to design caged siRNAs for the photomodulation of gene silencing of exogenous and endogenous genes.  相似文献   
59.
The low overall survival rate of patients with pancreatic cancer has driven research to seek a new therapeutic protocol. Radiotherapy (RT) is frequently an option in the neoadjuvant or palliative settings for pancreatic cancer treatment. This study explored the effect of RT protocols on the tumor microenvironment (TME) and their consequent impact on anti-programmed cell death ligand-1 (PD-L1) therapy. Using a murine orthotopic pancreatic tumor model, UN-KC-6141, RT-disturbed TME was examined by immunohistochemical staining. The results showed that ablative RT is more effective than fractionated RT at recruiting T cells. On the other hand, fractionated RT induces more myeloid-derived suppressor cell infiltration than ablative RT. The RT-disturbed TME presents a higher perfusion rate per vessel. The increase in vessel perfusion is associated with a higher amount of anti-PD-L1 antibody being delivered to the tumor. Animal survival is increased by anti-PD-L1 therapy after ablative RT, with 67% of treated animals surviving more than 30 days after tumor inoculation compared to a median survival time of 16.5 days for the control group. Splenocytes isolated from surviving animals were specifically cytotoxic for UN-KC-6141 cells. We conclude that the ablative RT-induced TME is more suited than conventional RT-induced TME to combination therapy with immune checkpoint blockade.  相似文献   
60.
Zhou  Junjie  Huang  Yu  Shen  Jialu  Liu  Xiang 《Catalysis Letters》2021,151(10):3004-3010
Catalysis Letters - The production of H2 from non-fossil sources is a key research challenge to contributing solving the forthcoming energy problem. Aqueous solutions of tetrahydroxydiboron have...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号